Learning from partially labeled data
نویسنده
چکیده
The Problem: Learning from data with both labeled training points (x,y pairs) and unlabeled training points (x alone). For the labeled points, supervised learning techniques apply, but they cannot take advantage of the unlabeled points. On the other hand, unsupervised techniques can model the unlabeled data distribution, but do not exploit the labels. Thus, this task falls between traditional supervised and unsupervised learning.
منابع مشابه
Diverse reduct subspaces based co-training for partially labeled data
Keywords: Rough set theory Markov blanket Attribute reduction Rough co-training Partially labeled data Rough set theory is an effective supervised learning model for labeled data. However, it is often the case that practical problems involve both labeled and unlabeled data, which is outside the realm of traditional rough set theory. In this paper, the problem of attribute reduction for partiall...
متن کاملLearning model order from labeled and unlabeled data for partially supervised classification, with application to word sense disambiguation
Previous partially supervised classification methods can partition unlabeled data into positive examples and negative examples for a given class by learning from positive labeled examples and unlabeled examples, but they cannot further group the negative examples into meaningful clusters even if there are many different classes in the negative examples. Here we proposed an automatic method to o...
متن کاملPropagation Kernels for Partially Labeled Graphs
Learning from complex data is becoming increasingly important, and graph kernels have recently evolved into a rapidly developing branch of learning on structured data. However, previously proposed kernels rely on having discrete node label information. Propagation kernels leverage the power of continuous node label distributions as graph features and hence, enhance traditional graph kernels to ...
متن کاملSemi-supervised Clustering in Fuzzy Rule Generation
Inductive learning approaches traditionally categorized as supervised, which use labeled data sets, and unsupervised, which use unlabeled data sets in learning tasks. The great volume of available data and the cost involved in manual labeling has motivated the investigation of different solutions for machine learning tasks related to unlabeled data. The approach proposed here fits into this con...
متن کاملLearning from Partially Annotated Sequences
We study sequential prediction models in cases where only fragments of the sequences are annotated with the ground-truth. The task does not match the standard semi-supervised setting and is highly relevant in areas such as natural language processing, where completely labeled instances are expensive and require editorial data. We propose to generalize the semi-supervised setting and devise a si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002